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STRESS CONCENTRATION ABOUT CURVILINEAR HOLES IN #36/1009
PHYSICALLY NONLINEAR EIASTIC PLATES

A.N.Guz?, G.N.Savin, I.A.Tsurpal (Kiev)

An approximate solution method of plane physical nonlinear
problems of stress concentration about curvilinear holes

in thin plates made of a material subject to a nonlinear

law of elasticity is given. The solutions are represented
in the form of expansions in the small parameter w and €.
The determination of the stress function F for a physically
nonlinear elastic plate with a hole reduces for each ap-
proximation to the integration of nonlinear differential
equations. Stress concentration about an elliptic hole is
considered in zero, first, and second approximation. The
coefficient of stress concentration k is found on the contour
of the hole, depending nonlinearly on the tensile forces P,
theellipticity of the hole, and a parameter A characterizing
the mechanical properties of the material. Tables represent
the values of the coefficient of stress concentration for
various values of the parameters P, A, and €.

1. The problem considered is that of stress concentrations in the neighbor-
hood of curvilinear orifices without sharp corners in a thin plate consisting
of a material for which the stress - strain ratio is nonlinear even in the
presence of comparatively small strains. Given the deformation magnitude con-
sidered, all geometric relations of elasticity remain linear, i.e., we are deal-
ing with a variant of the physically nonlinear theory of elasticity, with a
specified nonlinear law of elasticity.

A previous study by the author (Bibl.l) examined this problem for the non-
linear law of elasticity® (Bibl.2), using conformal mapping of the region in
question, outside the curvilinear orifice, onto the exterior of a unit circle
and introducing the Kolosov-Muskhelishvili complex potentials. For the sought
stress function, represented in the form of expansions in a small parameter,
differential equations and boundary conditions for successive approximations in
curvilinear coordinates, given by a mapping function, have been derived. How-
ever, in view of the cumbersomeness of the right-hand sides of the equations,
this method has led to extremely complex calculations with respect to orifices
of noncircular shape.

This paper, utilizing the same nonlinear law of elasticity (Bibl.2), pro-
# The stress concentration in the neighborhood of a circular orifice for this
law of elasticity has been investigated elsewhere (Bibl.2, 7, &, and 9).

#% Numbers in the margin indicate pagination in the original foreign text.



poses another approximate method for the solution of the above problem, which
makes it possible to complete this solution with respect to certain noncircular
orifices. The new approach is based on the approximate method of "perturbation
of the boundary form™ (Bibl.3), as successfully used by the authors (Bibl.L, 5,
6) in investigating stress concentrations in the neighborhood of analogous curvi-
linear orifices in shells.

2. The approximate method described here requires the representation of all
basic equations in a polar coordinate system; hence we will use, in the form
given elsewhere (Bibl.2), the nonlinear law of elasticity for a generalized
plane stress state:

6 = ;—Kk(so) oo+ ———;G-s(tz) (0r— 00)» /1010
o = k(500 + 81D (00 = 00, (2.1)

1
Ere = G & (1) Tre»

where €, €ps and €, as well as O, Op, and Trq, correspondingly, are the mean
stress and strain components over the plate thickness in the polar coordinate
system (r, ¢); K and G are constant moduli of volume deformation and shear,
respectively, for the physically nonlinear materlal of the plate in the presence
of vanishingly small deformations; k(se) and g(td) are the pressure and shear-
stress functions which characterize, respectively, the change in volume and

shape at any point of the body during its deformation. The dimensionless quanti-
ties so and ty are expressed in the form of invariants:

=0 1
S= 35 = g @+,
2.2
ﬂ=2}—wﬂm+% 0,0, + 377,). (2.2)

For many materials, volume deformation over a wide range obeys Hooke's law so
that, in eq.(2.1), it may be assumed with a high degree of accuracy that
k(so) 1. The slight deviations from linear dependence between stress and
strain in the elasticity relations (2. l) can be, with sufficient accuracy,
mapped by the function g(t3) = 1 + gt2.

Hereafter, we will assume that, in the elasticity relations (2.1),

k(so) =1, g(d)=14g1, (2.3)

where g is a dimensionless constant.

At such a choice of the nonlinear law of elasticity (2.1) under the condi-
tions (2.3), the problem of the stressed state of a thin plate reduces to find-
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ing the stress function F(r, ¢) from the fourth-order nonlinear differential
equation (Bibl.2, 8):

21[ 1 1
AAF+F|:—"‘—F,T,—?(F,,T,+F,T,,) o
2.4

111 1 1 1
- "ﬁ‘(—z‘FrrTvv_ FroT,p + 'E‘F"Trr)_ ‘z—r(FrTrr + F,.T;) — ?A (TAF)] =0

in the presence of corresponding boundary conditions over the orifice contour
and at Minfinity". If the function F(r, ©) is known, the stress components o, ,
Op, and Trp may be directly found with the aid of F(r, ©) from the formulas

1f1or 1 6F)_ 11 1 .
o = F[T'a?‘*'r_"a?] = 'RT[TF'+r—'F"]’

1 11 1 (2.5)

In egs.(2.4) and (2.5), r is a dimensionless coordinate referring to the /1011
quantity R which characterizes the absolute dimensions of the orifice; A is the
laplace operator which, in dimensionless coordinates, has the form

1 1
4= —F,+—5FeqtFr. (2.6)

The material constant A and the function T(r, 9) have the form

- Kgs  _ ;.
1 . . . .
where p = & isa small dimensionless quantity

f = _ Kz
T BK+6)GY

9
T(r.¢) = —2—G’13 ,

where t& is given by the expression (2.2) and the components o, , Op» and Teg, are
associated with the stress function F(r, 9) by the relations (2.5). The small
parameter A, which characterizes the deviation of the nonlinear law of elastici-
ty from Hookets law, has the dimension 1/bar'2 and a magnitude of the order of
107% to 10'6, while the dimensionless constant go, for certain nonferrous metals
and their alloys, is of the order of 10° to 10° (Bibl.2).

The components of the displacements u(r, 9) and v(r, ¢) for the nonlinear
law of elasticity (2.1) under the conditions (2.3) are determined from the sys-
tem of equations



ou 1 1 1 1 1 1
o = T»K—R‘(F" th +7-*F") + R (—F"+27Fr+27a"‘"")

A 1 1 1 1
+'E{("2—77{‘+—9E)[F:r—TFan+F(F=- Fp.Frr+ 3['?9)

2 1 1 1
+ 5 (FrFop = 3Fy Frog) + — (Fap + 3F:)](-F,, +2—F+2 F,,),
100 w1 11 1 1 1 (2.8)
Tty T SRR (F "+7Fr+7?F")+€6E(2F"‘TF"FF")

A 1 i 1 1
+ —1_25—(_271? + '35-)[5‘5— ‘;‘FrFrr+ ‘F(Fg — FyoFpr + 3F,)

1 1 1.1
+ 25 (F Fpp = 3F, F) + ¢ (Fhy + 3F3)] (25,, ——F,— ?-F,,) :

Thus, the solution of the problem reduces to an integration of the complex
fourth-order nonlinear equation (2.4) or of the system of nonlinear equations
(2.8) under definite boundary conditions over the orifice contour as well as
under conditions of the behavior of these functions at infinity™ (Bibl.l).

3. Consider orifices of a shape such that the function /1012
Z* = Rt +efQ)), (* =r"e®; r* = Rr; z=re?; [ =pge) (3.1)

realizes the conformal mapping of an infinite plane with a circular orifice of
unit radius onto an infinite plane with an orifice having the shape considered.
In the function (3.1), R is the true constant characterizing the dimensions of
the orifice; the function f({) depends on the shape of the orifice; € is a small
parameter; the true quantity satisfying the condition € € 1 and the roots of

the equation 1 + ef'(g) = O should lie within the unit circle in the plane C.

We will present the solution of eq.(2.4) and of the system of equations (2.8) in
the form of expansions in the small parameters p and € (2.7):

Flr.o;m8) =H, D, D) ie/Fe(r,q); (3.2)

k=0j=0

urgi g3 6) = Hy D) D) pelu®(r, ),
k=0 j=0

(3.3)

o0 00_1
v i) = Hy D, D, ptelv®™(r,9),
k=0 jm0

where H, is selected from the condition HB®/R* = 1. Hence,



R? GR? G
”°=‘p—=?]/3+‘f' (3.4)

The stress and strain components in the coordinate system (p, 6) also will be
presented in the form of series in W and €:

k=0 Jum0 k=0j=0 (3'5)
o o0
T = 2 Z’,‘tel.,n »
k=0 =0
oo 0 [ee] 00
7 6
U, = 2 Z.“ke""(ok'”’ Uy = Z#"e’us*'”, (3.6)
k=0j=0 k=0j=0

Substituting the function F(r, w; u; €) of eq.(3.2) into the fundamental equa-
tion (2.4) and equating to zero the coefficients in the presence of identic

1
exponents of w", e‘, will yield the equation for determining the function F?“J)
in the form of

AAF‘(*'D(’, 'P) == Lk.! (F(O.o) 3 vsey F(k—l“l—l))' (3 e 7)

We will present explicit expressions for the right-hand sides of eq.(3.7), for
certain values of k and jJ.

For k =0, =0, 1, ...

Lo (FO, ... ,F&%-1) = 0. (3.8)
For k

]
[
-
[N
i
(@]

101

Ly, o (FO9) = L, (F©). (3.9)

The developed form of the operator Lo (M%) wvas given by Tsurpal (Bibl.8).
For k =2, j=0

Lz,o(F(o'o)9 1;‘(],0)) = L] (ﬂo'o)y FI'O)) ¢ (3 ‘10)

The developed form of the operator L, (F*%°’, F'*°)} was given in another report
(Bibl.9).

For k = 1, j = 1, the developed form of the operator L,; will be



L, (F(o.o)’ F(o.x)) = TQo (_'_.1' F‘o’.x) + ',IT' F'(a.x)) + ng,x) (_rl’ tho) + _:_ F’(o.o))
1 1 1 1 1
+ Fo (',T Tg)..o) + — T,(°'°)) + Fo (_;’_ T&"&" + - T$°"’) — 2[(_’._ T('g.o) ( 3, 11)

1 1 1 1 i 1 1
- _r_‘T('o,o)) (T F'(g.l) - F;""’) + (_r_ F('g.o) - F$°' 0)) (T Tr(g. 1) = T$°-”)]

— _§_A (I‘(O.I)AF(0.0) + T‘(o,o)AF(Q'l)) ,

where

T8 = (F99) = FQOFON 4 L [(F0) = FROFSY -+ 3(FS) (3.12)

+ %(F'(O-O)F’(&o) — 3F,(2’°) F‘o.t))) + 714‘[(1'1%0) L= 3(1:30.07)31 ;

T = 2EPOFPD — L (FSOFOD 4 FSDEOD) 4 - QFEOOFOD 6.13)

2
— FQOFGD — FOD FO0 | 6RO.0 FQ) 4 ;a_(p'(om FOD + FOD FE0

—3FQOFPD — 3FLY FO.0) 4 ri‘(z F9OFGY 6 FOO FlO.N)

Proceeding analogously, we can write explicit expressions for the operators Ly,
at any (k > 1, j > 1) values of k and j. The solution of eq.(3.7) is sought in

the form of a Fourier series
FEB o) = D) {(fim)(r)cosmp + gl (r)sinmep). (3.14)
m=0

To find the stress components 955 9, and Tog and the displacement components

and ug in the curvilinear orthogonal coordinate system™ (p, 6) given by the
function (3.1), we utilize, by analogy with another paper (Bibl.6), the corre-
sponding formulas for conversion from the polar coordinates (r, ®) to the curvi-
linear orthogonal coordinate system (p, 9).

Expanding the obtained expressions for the stress components Oy5 995 and

Tpp and for the displacement components u, and uyy in series in u and € and /101k

taking into account the form of the function (3.1), we have

J-1
i 3

me0

O';k'l) = Ho( 1 a 1 al )

o ¢ T

% The linear coordinate p = 1 coincides with the contour of the orifice under
study.
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f(ezul’ = —_Ho

N R R A
e

J—-1

o \? a1 o1 @
o = Hoa—e.nk'”(o, QH'HoZ [[fil"")a—er*- Ly- )(—e"gé"*'
m=0
1 o som_ 9" _1_] k,m)
b g [P0 ()
1 O a1
2 Fen - J-m) __ [ (J-m) -
I _Li_ﬁ_’_)] (g, 0
+gh (_e_ et )5 @95
J—1
ukd) = y®d 4 Z‘ [LY=m y®m) 4 LJ-mptem],
m—0
I-l (3-16)

U = ph 4 Z [LY-mgtkm — [Y-mytm],

m=0

Substituting the functions F(r, ¢; u; €) [eq.(3.2)] and u(r, o), v(r, )
[eq.(3.3)] into eq.(2.8) and equating to zero the coefficients in the presence
of identical exponents of w , ¢ » we will find the system of equations for de-

termining v (v, 9), v

The functions F***) (p, 8) entering into eq.(3.15) are solutions of eqgs.(3.7)

(i) (r, ®) which enter into eq.(3.16).

F*% (r, ©) in the form of eq.(3.14), in which the variables r and ¢ are re-

£y’ (r) and &’?)
conditions for F

pEL‘:J.)ced by o apd %;}respectively.
(i, §)

Then, the arbitrary constants entering into
(eq.(3.14)] are determined from the corresponding boundary
(p, 8); these conditions are derived from the expansions

analogous to eqs.(3.2) and (3.3), for the orifice contour under study, on the
basis of an expansion in a double series in B and €.

The stress and strain coefficients over the contour of the orifice in
question are found from egs.(3.4), (3.5), and (3.15) at p = 1.

Consider the problem in which the stresses

Oelr = wi(r,9; 1),

are specified over the orifice contour.

assume that, in eq.(3.17), the quantities ¥, and ¥ depend on w.
of the orifice contour in parametric form is determined by the function (3.1} /1015

and may be written as

r=r(p,9),

7

Toolr = va(r, @5 1) (3.17)

For the sake of universality, let us

The equation

¢ = ¢ 0) (3.18)



forp = 1.

Having utilized egs.(3.1) and (3.18), we will present the right-hand sides
of eq.(3.17) as double series in Wk and €

dolr= D ueptP0), Talr= D D uelyi(0). (3.19)

k=0j=0 k=0 ju=0

Substituting expressions (3.4) into eq.(3.19), assuming that p = 1, and compar-
ing the coefficients with identical exponents, we obtain the relations

o D|p = D),  Tleh | = yihI(G). (3.20)

From eq.(3.15), taking eq.(3.20) into account we obtain the boundary conditions
for determining the (k, j)th function Flsd) (r, ¢®) in the form of

1 i 1 k,J) .L k,J)
(—Q— 3e+ : aga)F( @ 1—-Ho'pi (0)9-1
J-1
19 # 10 1 o
—_ ~m) J-m ——
{,,2[ (o) v )
* 1
— L™ __]F(t.m) ,9}
Y 5000 ¢ @0, (3.21)

ot 1 Fod(g = - {é—: [( LY-™ — 2r{-m) 1
0000 o ’ e=1 6960 r}

m=0

o=1

m[1 0 1 o2 3\ | wm
#3287+ g Jre e

In accordance with eq.(3.2), the solution obtained to the n'h approximation will
be construed as the function

k+j=n—1
=

T, koJ (k. 0)
Fo(r, s 36 = Hy L pre FOI(r, @) (3.22)

From eqs.(3.15) and (3.21) we can see that, for each function F(&J), we obtain

the boundary problem for a circular orifice. This also explains why all the
basic equations and the relations (2.1), (2.4), (2.6), and (2.8) were written
in polar coordinates.

In eqs.(3.15) and (3.16), - ey 1597 are differential operators
whose form depends on the functlon f(g) [eq.(3.1}]. The series expres31ons for
these operators for the zeroth, first, and second approximations are given by
Savin and Guz! (Bibl.6).



L. Consider by way of an example the most elementary case, namely, /1016
the case of omnilateral uniform tension produced by stresses P applied to an in-
finite physically nonlinear isotropic plate with an elliptical orifice (Fig.l)
obeying the elasticity law (2.1) under the conditions (2.3).

=

The function (3.1) which maps the exterior of the elliptical orifice onto
the exterior of a circle of unit radius for this case, as is known (Bibl.10)},
has the form

Z'=R[C+%]. (h-1)
where
_a+b _a—b T * _ 1
R=——, €= T {=ope®,  z¥= Rre'® (4..2)

and where a and b are the semiaxes of the ellipse (Fig.l). Obviously, the
function™ f({) in eq.(3.1) will, in this case, be f({) = 1/C.

The approximate solution of this problem, taking into account the three
approximations, reduces to the successive integration of eq.(3.7) allowing for
the form of the operators (3.8) - (3.13).

The stress functions with the zeroth F°°) | first F*°), and second F'3’
approximations for the mentioned omnilaterally stressed physically nonlinear
elastic plate, with a circular orifice, are known (Bibl.9) and have the form

F0.0) — 21;{ (r*—2lnr), (4.3)

#* For an orifice with rounded angles, the function f({) will be (Bibl.10), for a
square orifice, f(C) = 1/¢%; for a triangular orifice, £() = 1/C%, etec.

9



/1017
pom_ _P[1(1 11
= —'11—3 7‘— -;,—+~2“T +Inr |, (L!-'L")

P13 (1 11 471 511
30) — - | 7 — —
F Hﬁ[sl"’+4( P T B T ) r’) : (4.5)

The stress function for a linearly elastic plate with an elliptic orifice has
the form (Bibl.5):

FOO(r, ¢) = P (l’— — I)COSZ(p s

Hy
(4.6)
FOY(p p) == }}; [(; rl‘ -:—2)0054(;1 —lnr].

Substituting the function (4.3) into eq.(3.12), we find the functions < %) (r,
®) in the form of

o0 P 1
Ton = ’17,,2‘(‘“7)' (4. 7)

(OI)Know:Lng the functions (4.3) and (4.6) we find from eq.(3.13) the function
T (r, 9):

TON ):4_}’_2_1_ 13t g1
'? HE »? r + " cos2p. (4.8}

Substituting the functions (4L.3), (4.6), (4.7), (4L.8) and their derivatives
into eq.(3.11), we find the series expression for the operator Ly, .

The differential equation (3.7) for the function Fi i) (r, 9) will be
daFom 1642 (L 4 561
T \ 77 36,5 |cos2g = 0, 4.9

The specific integral of eq.(L.9) becomes

a. P‘l 1 1
FoD(r, ) = — -6 r‘ + 3 cosgp. (L',.lO)

The general integral of the homogeneous equation (4.9) will be taken as

Fo(ts @) = ) (CagP™™**+ Cppyr ™) cosmp. (4.11)

m=-2

10



The integration constants Cya and G4 in eq.(4.l1)are determined from the
boundary conditions (3.21):

1 8 1 az) [ a1 9

—_— ——— . F(lrl) ’0 R 20 — — (1,0) , =0,

(e oe T o o) @O+ Rjcosdbg- 69]F R
o 1 (e 1 9 (4.12)
e FO)(y @ —-R[2s 20(————)]1?(1"» L0 =0.
900 ¢ e )..x A\ T o @ 6) e=1 0

Omitting the interpfg;ary calculations, we will present the final expressions
F ¥

for the function (r, ©): /1018
FONO(p, ) = BRI o Y 1l sl+36i cos2p (4.13)
’ 30 H} r? r rt ’ :

Let us consider the second approximation in greater detail. The stress
function Fa(r, ¢; u; €) [eq.(3.22)] will be

Fz(,-,q,; Iy e) = Ho(F(°'°) + ‘uF(I.O) + ”SF(!.O) + eF) + g2F(0.2) + /leF“'l)) . (l&-lh)

From ?S?f(3’5)’ taking into account the values of the component?kcéh’), ofkd) |
and 75§’ of eq.(3.15) as well as the values of the functions F'%¥ (x =0, 1, 2,
j=0,1, 2) in egs.(4.3) - (4.7), (4.13), and (4.14), we will determine the
stress state in a physically nonlinear thin plate, weakened by an elliptical
orifice, to a second appr?ximation. Over the orifice contour, the coefficient
of stress concentration k'?’ = oy/P will be’®

K® = (%) = 2[1 — 1. 5004 p* 4- 10. 60542p* + 2¢ cos 20
=1
o + 262 cos49 — 10, 6604e p? cos20]. (4.15)

5. It can be seen from eq.(4.15) that, if allowance is made for the physi-
cal nonlinearity of the materials satisfying the elasticity relations (2.1)
under the conditions (2.3), the coefficient of stress concentration will non-
linearly depend not only on the magnitude of the tensile stresses P (Fig.l) and
on the parameter A (characterizing the strength properties of the plate materi-
al) but also on the ellipticity of the orifice, characterized by the parameter €
[eq.(4.2)]. Setting € = 0 in eq.(4.15), we obtain the values of k for the case
of a circular orifice (Bibl.9). Setting X = 0 in eq.(4.15), we obtain the
values of k found by Guz'! (Bibl.5) when using the mentioned approximate method
for the case of an elliptical orifice where the plate material obeys Hooke's
law. For this last case, there exists an exact solution (Bibl.10) of the prob-
lem. A comparison of the corresponding values of k given by the exact solution
(Bibl.10) with the approximate k (Bibl.5) will yield a clear idea on the rate

¥ The superscript of the coefficient of concentration in eq.(4.15) gives the
number of the approximation.

11



TABLE 1 1019

alb 100 1.05 1.10 1.20 130 1.50 1.60

Linear Exact 2 2101 2212 2444 2616 3000  3.200
Theory | Solution 2 1904 1818 1666 1538 71333 1250
2
2

Approximate

: 2.097 2.198 2.435 2.587 2960 3.136

A=0 Solution 1904 1818 1669 1546 1360 1.289
P In the linear theory, k is independent of P

Nonlinear 60 1.920 2.002 2.084 2.248 2.412 2.730 2.709

Theory 1920 1843 1.775 1658 1565 1431 1557
- 1904 1980 2055 2,208 2.361 2660  2.568
1904 1834 1772 1667 1584 1469 1.667

1.895 1.962 2.301 2.170 2310  2.587 2,414

4, 80 1895 1832 1777 14686 1616 1522 1.802
1868 1954 2014 208 264 2517 2250
%2 1868 1841 1794 1718 1662 1593 1966

TABLE 2

alb 1.00 1.05 1.10 1.20 130 1.50 1.60

Linear | Exact 20000 2.1010 22120 24440 26160 3.0000 3.2006
Theary | Solution 20000 19047 18182 16667 15387 13333 1.2509

Approxinated 20000 2.0970 2.1980 24350 25870 29600 3.1360
Solution 70000 19048 18188 1.669 15460 13600 1.2896

P In the linear theory, k is independent of k

A 1_.9606 2.0406 220_?_ 2.3102 2.4874 2.8298 2.8987
s 19606 1.8654 1.7886 1.6570 1.5500 13914 14278

600 - — S
A _1_.968_2‘ _2:0(!?2 _2_.1 56% _2 J424 _2_52@ _2_8~710 2 .9902
s 1.9682 1.8790 1.7984¢ 1.6600 15466 13774 1.3712
L | 19226 20050 20878 2253 24196 27380 27248
' 19226 1.8450 1.7756 1.6578 1.5616 1.4272 1,5460

800 . — -
Nonlinear A 1_2‘!7_4‘ 2.0368 2.1262 2.3044 2.4914 2.8200 2.881Q
Theory s 1.9474 18628 1.7868 1.6564 1.5504 1.3948 14386
A 1_.209_6‘ _1_9_7}(2 2.0466 2.1944 2.3430 2,6346 2.5150
* 19006 1.8330- 17730 1.6728 1.5944 14866 1.7118

1000 — T
L |19258 20092 2090 22604 24266 27494 27468
3 19258 1.8472 1.7768 1.6572 15612 14222 1.5302
1.8946 _1_-95 50 2.01 68‘ 21432  2.2722 25292 2.2279
1200 A 18946 1.8390 1.7906 1.7120 16532 1.5800 1.9353
2 1.9068 l.?ﬁ@_ 20596 2.2142 2.3684 2.6704 25892
. 19068 1835 1,7722 1.665¢ 1 .5814 B l 4632 1 .6499
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of convergence of the approximate solution of the problems of stress concentra-
tion about curvilinear orifices for which exact solutions are lacking, as pro-
posed above. Such a comparison is presented in the first two rows of Tables 1
and 2, The values of k in these Tables indicate that even for the greatly ex-
tended ellipse a/b = 1.6, the third approximation [eq.(4.15)] gives for k a
very good agreement with the exact value (the difference does not exceed

2.5 - 3.0%). Tables 1 and 2 present values of k [eq.(4.15)] calculated for two
points A and B on the orifice contour (see Fig.l). The values of k at the
point A(® = 0) are substituted into the numerator and at the point B(® = m/2),
into the denominator, for different values of a/b, P, and A. The values of A

were taken from another report (Bibl.7): Ay = 1.02 x 107° —Eigg— (copper); Az =

= 0.055 x 107° bi — (aluminum bronze); As = 0.033 x 107° bl — (open- /1020
r axr

hearth steel). The numerical data presented in Tables 1 and 2 indicate that:
a) the ellipticity of the orifice - as in the classical case, i.e., when the
plate material obeys Hooke'!s law - greatly affects the coefficient k of stress
concentration; b) as the applied tensile stresses P (Fig.l) are increased, k
will decrease at the point A and will increase at the point B. It follows that,
as the numerical values of the parameters P and A increase, a consideration of
the physical nonlinearity generally yields a more uniform stress distribution
over the orifice contour. The approximate method for the solution of the prob-
lems, formulated in Point 1 above, was based on a formal expansion of the re-
quired functions in double series over the small parameters p and €, without
evaluating at all the convergence of the series. An idea as to the rapidity of
convergence of the proposed method in the general case (Bibl.5€ 92 can be ob-
tained by calculating the concentration coefficients k27, K1) from
formulas analogous to eq.(l4.15) and corresponding to the stress functions F,-»,
Fo-1, Fy for the preceding approximations.
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